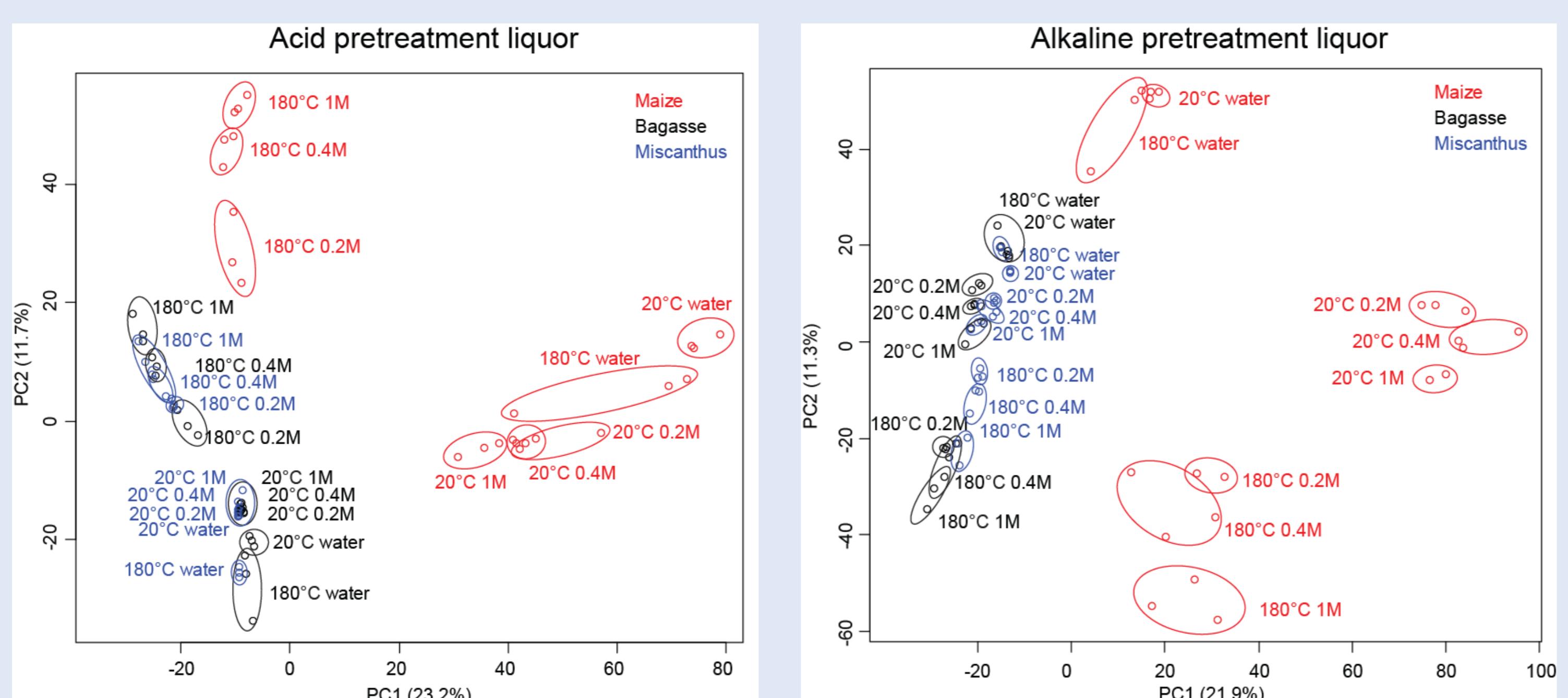


Screening of sugars and phenolics released during pretreatment of miscanthus, maize and sugar cane bagasse for potential added value products from C4 crops

Leonardo D. Gomez^a, Ruben Vanholme^{b,c}, Susannah Bird^a, Luisa Trindade, Rachael Simister^a, Wout Boerjan^{b,c}, Simon J. McQueen-Mason^a
E-mail: ldg3@york.ac.uk


^aCNAP, Biology Department, University of York, PO Box 374, York, YO10 5YW, UK. ^bDepartment of Plant Systems Biology, VIB, Technologiepark 927, 9052, Gent, Belgium. ^cDepartment of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052 Gent, Belgium.

INTRODUCTION

The viability of cellulosic fuels hangs on the reduction of the costs involved in the conversion processes. An approach to reach a realistic cost for conversion of biomass into large volumes/low cost products is by identifying added value products that can be obtained during the production of biomass derived fuels. This biorefinery concept involves the benefits of reducing the cost of the overall process, replace petroleum derived materials and chemicals, and reduce waste streams. Pretreatments have been considered for a long time as the key to increase the efficiency of pretreatments in terms of increased fuel production after fermentation. An interesting new approach to evaluate pretreatments is the preservation of the valuable chemicals in the pretreatment liquors in order to add value to the process from products obtained by fractionation of the biomass. In the present work we characterise the sugars and lignin derivatives present in the pretreatment liquor of maize, miscanthus and sugar cane bagasse under a range of acid and alkaline pretreatments.


EFFECT OF PRETREATMENTS

To reveal the general similarities and differences between the pretreatment conditions, all samples were integrated and aligned after UHPLC-MS analysis and PCA was performed. The composition of the pretreatment liquor with acid 20 °C is not very different from water pretreatment. However, the pretreatment liquor with acid 180 °C clearly separated from the 20 °C, indicating that the **acid needs higher temperatures to be effective**. In terms of biomass, the PC1- and PC2-based PCA plots showed a **high similarity between miscanthus and bagasse**, while maize samples were clearly different.

MONOSACCHARIDES

The monosaccharide composition of these liquors was analysed using high-performance anion-exchange chromatography (HPAEC). In most conditions used, **glucose** and **xylose** were the most abundant monosaccharides, these are followed by **arabinose** (up to 39%), **galactose** (up to 10%) and **mannose** (up to 6%). Alkaline conditions release a complex mixture of monosaccharides with a large representation of C5 sugars. Acid conditions, on the other hand, produce liquors with higher proportion of glucose, particularly at low temperatures.

CHARACTERISED COMPOUNDS

	bagasse				miscanthus				maize			
	water	0.2 M NaOH	0.4 M NaOH	1 M NaOH	water	0.2 M NaOH	0.4 M NaOH	1 M NaOH	water	0.2 M NaOH	0.4 M NaOH	1 M NaOH
monomeric acids												
1 benzic acid	20 °C 180 °C 7217	20 °C 180 °C 714755	20 °C 180 °C 76175	20 °C 180 °C 109038	20 °C 180 °C 75689	20 °C 180 °C 104938	20 °C 180 °C 45682	20 °C 180 °C 72479	20 °C 180 °C 2486	20 °C 180 °C 18388	20 °C 180 °C 12043	20 °C 180 °C 13100
2 p-coumaric acid	6668	70675	706309	719410	2212870	2436559	369734	39446	60403	66250	90954	121678
3 ferulic acid	72 50	19252	37541	42517	43488	83507	84415	39 338	21671	21058	31598	28280
dimers with glycerol aliphatic chain												
4 Glc-(Glc)Glyceride 1	10 38	80	580	92	1381	105	2656	17 157	522	131	158	173
5 Glc-(Glc)Glyceride 2	29 98	167	1668	217	3175	269	5510	41 287	388	2174	435	428
6 Glc-(Glc)Glyceride 1	47 103	799	2419	1043	5720	1154	14754	92 169	705	974	935	3514
7 Glc-(Glc)Glyceride 2	48 110	594	2444	709	6467	801	14947	54 144	453	2515	593	6909
8 Glc-(Glc)Glyceride 1	9 33	180	935	319	3017	315	9469	39 103	196	755	243	2137
9 Glc-(Glc)Glyceride 2	4 30	69	804	91	2524	131	7727	19 74	33	1237	58	2005
ferulic acid containing dimers												
10 Glc-(Fer)Ferulic acid 1	128 206	10941	1345	13834	12398	15361	15378	361 158	19369	8215	21451	9190
11 Glc-(Fer)Ferulic acid 2	94 126	7733	10033	10531	13614	9476	10493	207 111	19436	9819	24514	11429
12 Glc-(Fer)Ferulic acid 1	6 45	881	8737	1554	8774	1970	7134	181 146	1322	6940	6884	2296
13 Glc-(Fer)Ferulic acid 2	11 59	1111	7532	1781	8296	2096	9286	175 159	1106	9062	1457	7589
14 Glc-(Fer)Ferulic acid	3 29	1743	4570	2132	4003	2986	3177	80 49	13837	13749	12409	12752
15 S-(S)-Ferulic acid	6 79	891	12688	1395	13044	3171	13415	118 91	2011	26398	2521	21996
16 Ferulic acid(S)-G	44 821	1325	16959	1472	86698	1337	60799	18 37	740	67683	783	38336
17 ferulic acid(S)-Ferulic acid 1	2 16	818	3538	1144	4388	2499	5130	2 2	904	2734	1798	3420
18 ferulic acid(S)-Ferulic acid 2	9 238	3410	22944	8283	29181	14562	42472	19 45	5886	11220	8007	18032

Eighteen phenolic compounds were structurally characterized based on their MSMS fragmentation and their respective ion traces. Benzoic **1**, *p*-coumaric **2** and ferulic acid **3** are among the highest accumulating compounds (based on MS traces).

Conclusions:

- Miscanthus and Bagasse pretreatment product profile are most similar to each other, while Maize presents a different profile of chemicals released.
- Xylose predominates liquor monosaccharides of Miscanthus and bagasse, while glucose predominates in maize.
- The alkaline pretreatment liquors were substantially more enriched in phenolic compounds as compared to acid. Grasses contain high levels of benzoate, *p*-coumarate and ferulic esters and these compounds are released in alkaline conditions.

Acknowledgements:

This work was supported by the European Commission FP7 as part of RTD programme SUNLIBB

